CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

Matt Whiteway whit8022@umd.edu

Dr. Daniel A. Butts

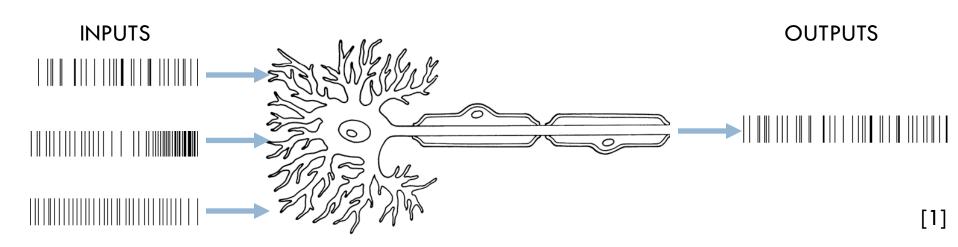
dab@umd.edu

Neuroscience and Cognitive Science (NACS)
Applied Mathematics and Scientific Computation (AMSC)
Biological Sciences Graduate Program (BISI)

AMSC 663 Mid Year Presentation

Background

- The human brain contains 100 billion neurons
- These neurons process information nonlinearly, thus making them difficult to study

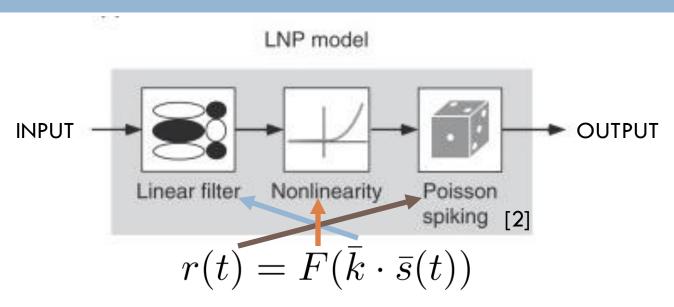


Given the inputs and the outputs, how can we model the neuron's computation?

The Models

- Many models of increasing complexity have been developed
- The models I will be implementing are based on statistics
 - Linear Models Linear Nonlinear Poisson (LNP) Model
 - 1. LNP using Spike Triggered Average (STA)
 - LNP using Maximum Likelihood Estimates Generalized Linear Model (GLM)
 - 3. Spike Triggered Covariance (STC)
 - Nonlinear Models
 - 4. Generalized Quadratic Model (GQM)
 - 5. Nonlinear Input Model (NIM)

The Models - LNP

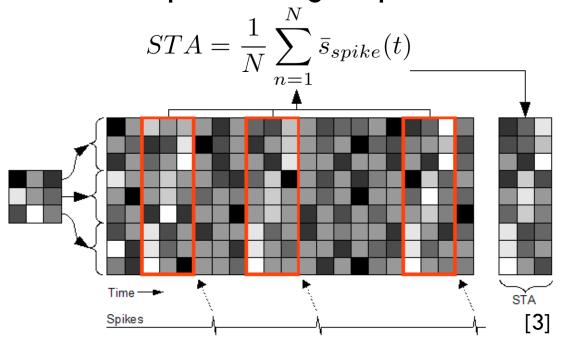


- Knowns
 - oxdots $ar{s}(t)$ is the stimulus vector
 - Spike times

- Unknowns
 - $ar{k}$ is a linear filter, defines the neuron's stimulus selectivity
 - \Box F is a nonlinear function
 - r(t) is the instantaneous rate
 parameter of an non homogenous Poisson process

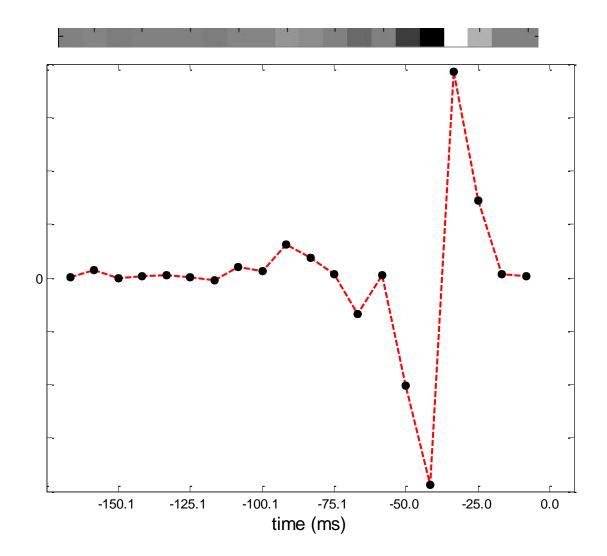
STA¹

 $\hfill\Box$ The STA is the average stimulus preceding a spike in the output, where N is the number of spikes and $\bar{s}_{spike}(t)$ is the set of stimuli preceding a spike



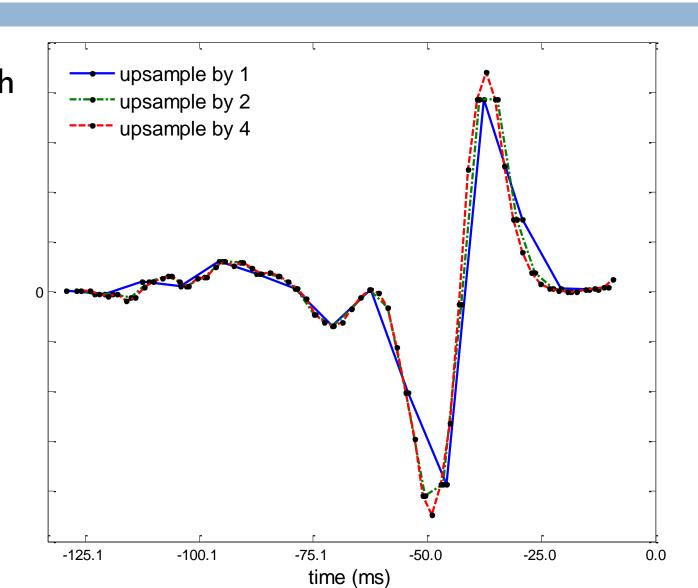
^{1.} Chichilnisky, E.J. (2001) A simple white noise analysis of neuronal light responses.

- Filter lengthof 20 timesteps
- Upsampling factor of 1



- Resolution of the filter is determined by time interval between measurements
- We can artificially increase resolution by upsampling the stimulus vector:
 DTstim
 - Upsample by 1:
 - □ Upsample by 2:

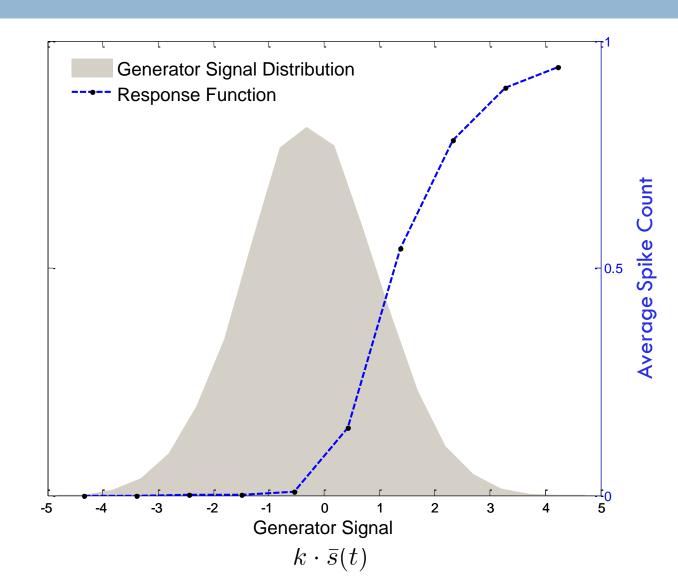
Filter lengthof 15 timesteps



- For the STA, a common approach to finding the nonlinear response function is to use the histogram method
- lacktriangle Method creates bins for the generator signal, $ar{k}\cdot ar{s}(t)$, and plots average number of spikes for each bin

$$r(t) = F(\bar{k} \cdot \bar{s}(t))$$

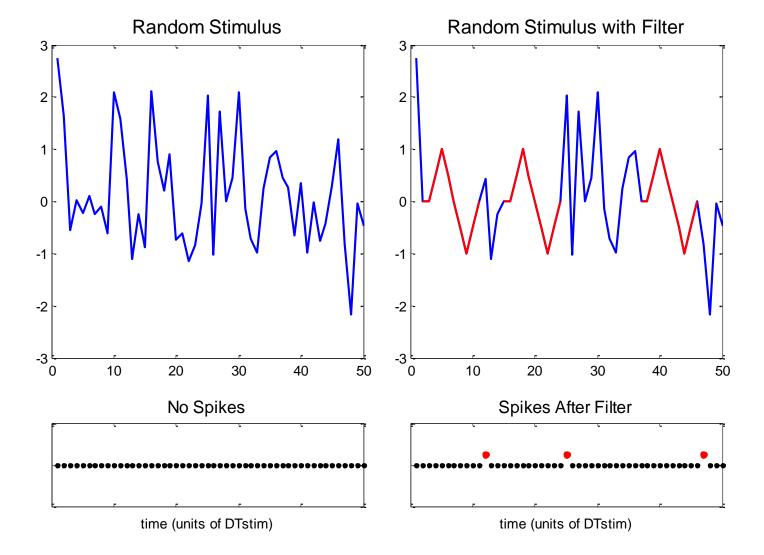
- Filter lengthof 15 timesteps
- Upsampling factor of 1



STA Validation

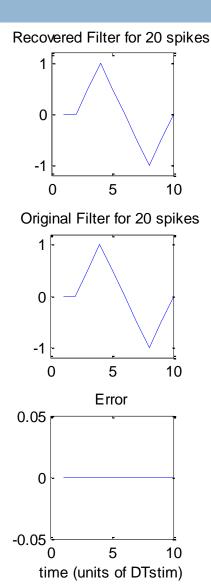
- For filter validation, I
 - created a stimulus with Gaussian random noise
 - added an artificial filter at random points
 - Recorded a spike for each instance of the artificial filter
- If the STA code is working properly, and if none of the artificial filters overlap, then the code should exactly recover the artificial filter

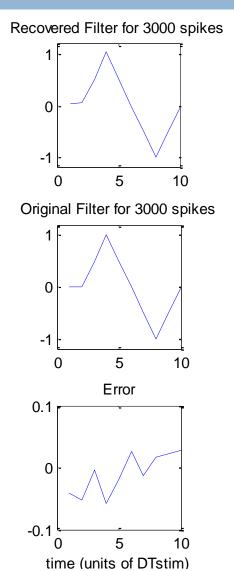
STA Validation



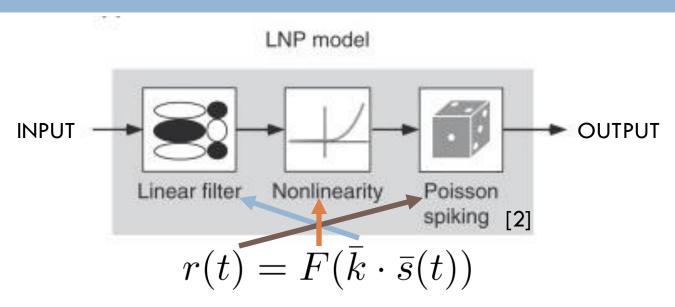
STA Validation

- □ filter length: 10
- □ stimulus length: 15000
- 20 spikes: No overlap of filters in stimulus, STA code recovers exact filter
- 3000 spikes: Substantial overlap of filters in stimulus, STA code recovers exact filter with some error





The Models - LNP



- Knowns
 - oxdots $ar{s}(t)$ is the stimulus vector
 - Spike times

- Unknowns
 - $ar{k}$ is a linear filter, defines the neuron's stimulus selectivity
 - \Box F is a nonlinear function
 - r(t) is the instantaneous rate
 parameter of an non homogenous Poisson process

GLM²

- Now we will approximate the linear filter using the Maximum Likelihood Estimate (MLE)
- $\hfill \Box$ A likelihood function is the probability of an outcome Y given a probability density function with parameter θ
- The LNP model uses the Poisson distribution

$$P(Y|\theta) = \prod_{t} \frac{(r(t)\Delta)^{y_t}}{y_t!} e^{-r(t)\Delta}$$

where Y is the vector of spike counts binned at a resolution Δ

We want to maximize a log-likelihood function

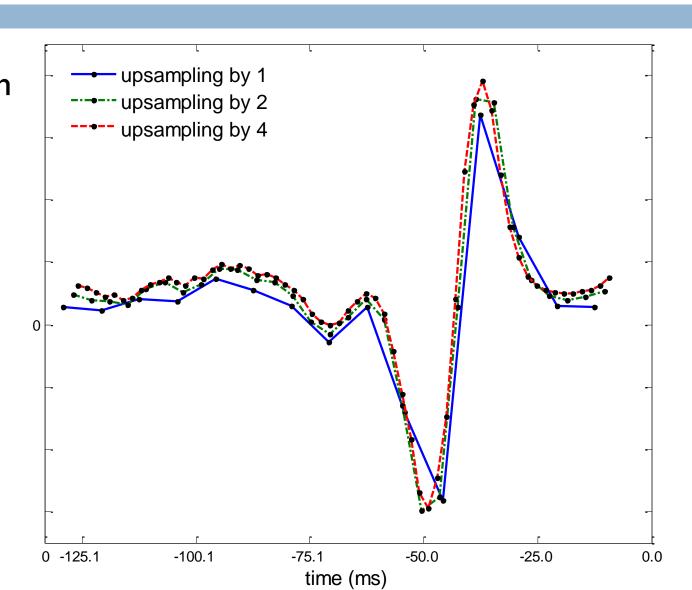
$$\mathcal{L} = \sum_{t=spike} log(r(t)) - \Delta \sum_{t} r(t) + constants$$

- $lue{}$ Can employ likelihood optimization methods to obtain maximum likelihood estimates for linear filter \bar{k}
- If we make some assumptions about the form of the nonlinearity F, the likelihood function has no nonglobal local maxima – gradient ascent!
 - □ F(u) is convex in u
 - □ log(F(u)) is concave in u
- \square I use F(u) = log(1 + exp(u-c))

$$\mathcal{L} = \sum_{t=spike} log(log(1 + exp(\bar{k} \cdot \bar{s}(t) - c))) - \Delta \sum_{t} log(1 + exp(\bar{k} \cdot \bar{s}(t) - c))$$

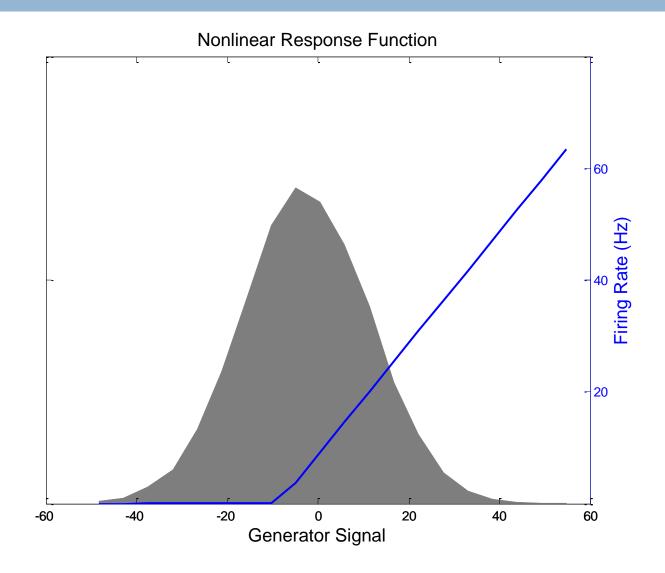
- Originally coded a gradient descent method took too many function evaluations
 - $lue{}$ About 1000 iterations for a filter of length 15 at \sim 1s per function evaluation
- Next used a Newton-Raphson method less iterations, but needed to compute Hessian
 - About 150 for a filter of length 15 at ~2s per function evaluation
- Need a quasi-Newton method
- □ Now use Matlab's fminunc
 - \square About 10 150 iterations at \sim 1s per function evaluation

Filter lengthof 15 timesteps



- For the GLM, finding the parameters to the nonlinearity can be done at the same time as finding the filter
- Assume the parametric form F(u) and include its parameter(s) in the optimization
 - Use log(1+exp(x-c)), fit offset c

- Filter lengthof 15 timesteps
- Upsampling factor of 1



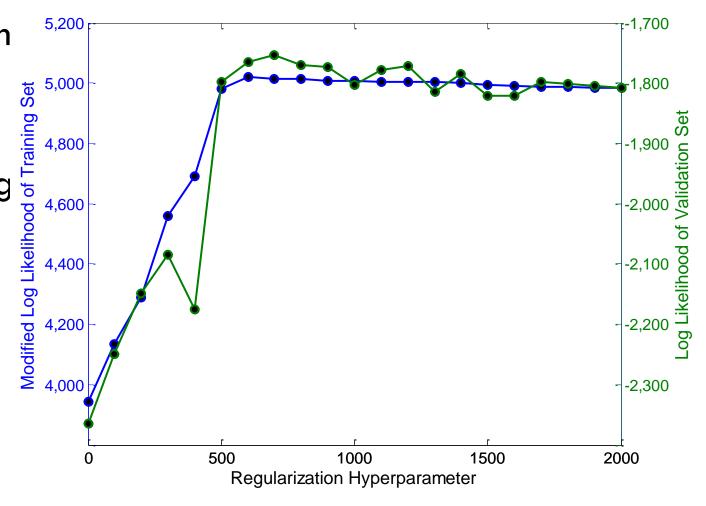
- We can also use regularization to add additional prior knowledge about solution attributes
- We know the filters should be smoothly varying in time
 - Penalize large curvatures in filter
 - Laplacian gives us the second derivative; we want to maximize likelihood while minimizing the L2 norm of the Laplacian of the filter

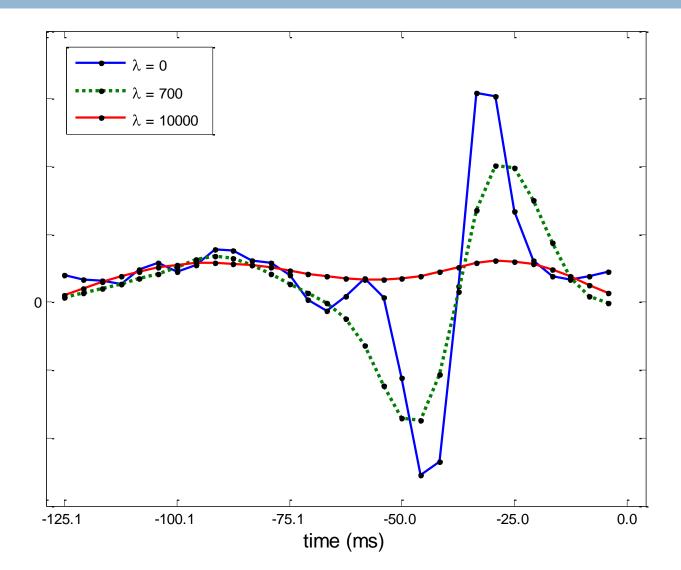
$$\mathcal{L} = \sum_{t=spike} log(r(t)) - \Delta \sum_{t} r(t) - \lambda ||L^t \bar{k}||_2^2$$

 $\ \square$ λ is a parameter that is not explicitly part of the model, hence called a hyperparameter

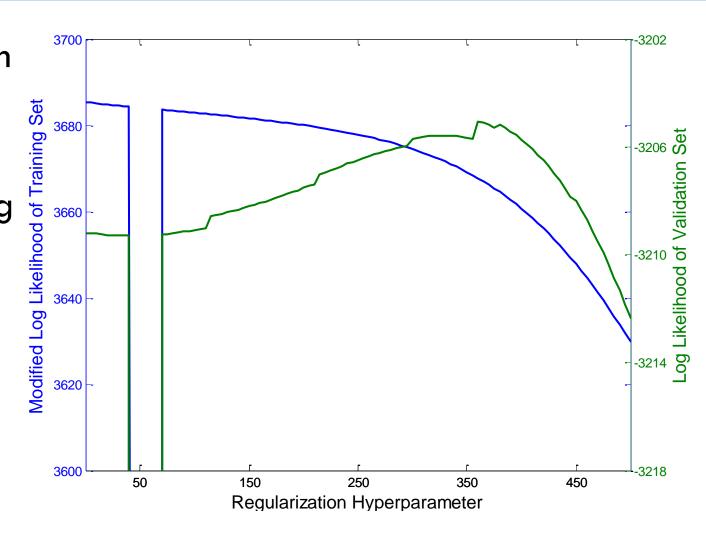
- \square How to choose optimal λ ?
- \square For a variety of λ values,
 - □ fit model parameters using part of the data (80%)
 - validate model on rest of the data (20%)

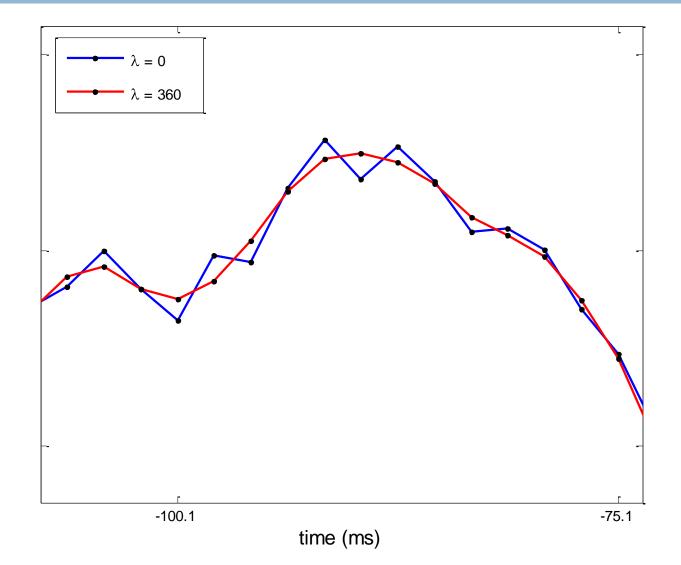
- Filter lengthof 15 timesteps
- Upsampling factor of 2





- Filter lengthof 15 timesteps
- Upsampling factor of 4





Schedule

- PHASEI (October-December)
 - Implement and validate the LNP model using the STA (October)
 - Develop code for gradient descent method and validate (October)
 - Done, but not efficient enough. I am currently using MATLAB's fminunc command instead
 - Implement and validate the GLM with regularization (November-December)
 - Complete mid-year progress report and presentation (December)

Schedule

- PHASE II (January-May)
 - Implement quasi-Newton method for gradient descent (January)
 - Implement and validate the LNP model using the STC (January-February)
 - Implement and validate the GQM with regularization (February)
 - Implement and validate the NIM with regularization using rectified linear upstream functions (March)
 - Test all models (April)
 - Complete final report and presentation (April-May)

References

- Chichilnisky, E.J. (2001) A simple white noise analysis of neuronal light responses. *Network: Comput. Neural Syst.*, 12, 199-213.
- Schwartz, O., Chichilnisky, E. J., & Simoncelli, E. P. (2002). Characterizing neural gain control using spike-triggered covariance. Advances in neural information processing systems, 1, 269-276.
- Paninski, L. (2004) Maximum Likelihood estimation of cascade point-process neural encoding models. Network: Comput. Neural Syst., 15, 243-262.
- Schwartz, O. et al. (2006) Spike-triggered neural characterization. Journal of Vision, 6, 484-507.
- Paninski, L., Pillow, J., and Lewi, J. (2006) Statistical models for neural encoding, decoding, and optimal stimulus design.
- Park, I., and Pillow, J. (2011) Bayesian Spike-Triggered Covariance Analysis. Adv. Neural Information Processing Systems ,24, 1692-1700.
- Butts, D. A., Weng, C., Jin, J., Alonso, J. M., & Paninski, L. (2011). Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. The Journal of Neuroscience, 31(31), 11313-11327.
- McFarland, J.M., Cui, Y., and Butts, D.A. (2013) Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLoS Computational Biology.

Figures

- http://msjensen.cehd.umn.edu/webanatomy archive/ /Images/Histology/
- 2. http://www.sciencedirect.com/science/article/pii/S
 0079612306650310
- 3. http://en.wikipedia.org/wiki/Spike-triggered_average