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Background 

Introduction                  STA                    GLM                            Conclusion 

 The human brain contains 100 billion neurons 

 These neurons process information nonlinearly, thus 

making them difficult to study 

INPUTS OUTPUTS 

 Given the inputs and the outputs, how can we model 

the neuron’s computation? 

[1] 

[1] http://msjensen.cehd.umn.edu/webanatomy_archive/Images/Histology/ 
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The Models 

 Many models of increasing complexity have been 
developed 

 The models I will be implementing are based on 
statistics 

 Linear Models – Linear Nonlinear Poisson (LNP) Model  

1. LNP using Spike Triggered Average (STA) 

2. LNP using Maximum Likelihood Estimates – Generalized 
Linear Model (GLM) 

3. Spike Triggered Covariance (STC) 

 Nonlinear Models 

4. Generalized Quadratic Model (GQM) 

5. Nonlinear Input Model (NIM) 
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The Models - LNP 

INPUT OUTPUT 

[2] 

 Unknowns 

     is a linear filter, defines the 

neuron’s stimulus selectivity 

     is a nonlinear function 

        is the instantaneous rate 

parameter of an non-

homogenous Poisson process 

 Knowns 

      is the stimulus vector 

 Spike times 

[2] http://www.sciencedirect.com/science/article/pii/S0079612306650310 
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STA1 

 The STA is the average stimulus preceding a spike in 

the output, where    is the number of spikes and        

is the set of stimuli preceding a spike 

[3] 

1.  Chichilnisky, E.J. (2001) A simple white noise analysis of neuronal light responses.  

[3] http://en.wikipedia.org/wiki/Spike-triggered_average 
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 Filter length 

of 20 time 

steps 

 Upsampling 

factor of 1 



STA Implementation 

 Resolution of the filter is determined by time interval 

between measurements 

 We can artificially increase resolution by upsampling 

the stimulus vector: 

 Upsample by 1: 

 Upsample by 2: 
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STA Implementation 
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 Filter length 
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STA Implementation 

 For the STA, a common approach to finding the 

nonlinear response function is to use the histogram 

method 

 Method creates bins for the generator signal,          , 

and plots average number of spikes for each bin 
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 Filter length 

of 15 time 

steps 

 Upsampling 

factor of 1 
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STA Validation 

 For filter validation, I  

 created a stimulus with Gaussian random noise 

 added an artificial filter at random points 

 Recorded a spike for each instance of the artificial filter 

 If the STA code is working properly, and if none of 

the artificial filters overlap, then the code should 

exactly recover the artificial filter  
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STA Validation 

Introduction                  STA                    GLM                            Conclusion 

 filter length: 10  

 stimulus length: 15000 

 20 spikes: No overlap 
of filters in stimulus, STA 
code recovers exact 
filter  

 3000 spikes: Substantial 
overlap of filters in 
stimulus, STA code 
recovers exact filter with 
some error 
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The Models - LNP 

INPUT OUTPUT 

[2] 

 Unknowns 

     is a linear filter, defines the 

neuron’s stimulus selectivity 

     is a nonlinear function 

        is the instantaneous rate 

parameter of an non-

homogenous Poisson process 

 Knowns 

      is the stimulus vector 

 Spike times 

[2] http://www.sciencedirect.com/science/article/pii/S0079612306650310 
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GLM2 

 Now we will approximate the linear filter using the 

Maximum Likelihood Estimate (MLE) 

 A likelihood function is the probability of an outcome    

given a probability density function with parameter  

 The LNP model uses the Poisson distribution   

 

 

 where   is the vector of spike counts binned at a resolution  

 We want to maximize a log-likelihood function  

 

2. Paninski, L. (2004) Maximum Likelihood estimation of cascade point-process neural encoding models.  
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GLM Implementation 

 Can employ likelihood optimization methods to obtain 

maximum likelihood estimates for linear filter    

 If we make some assumptions about the form of the 

nonlinearity F, the likelihood function has no non-

global local maxima – gradient ascent! 

 F(u) is convex in u 

 log(F(u)) is concave in u 

 I use F(u) = log(1+exp(u-c)) 
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GLM Implementation 

 Originally coded a gradient descent method – took 
too many function evaluations 

 About 1000 iterations for a filter of length 15 at ~1s 
per function evaluation 

 Next used a Newton-Raphson method – less 
iterations, but needed to compute Hessian 

 About 150 for a filter of length 15 at ~2s per function 
evaluation 

 Need a quasi-Newton method 

 Now use Matlab’s fminunc  

 About 10 – 150 iterations at ~1s per function evaluation 
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GLM Implementation 

 For the GLM, finding the parameters to the 

nonlinearity can be done at the same time as finding 

the filter 

 Assume the parametric form F(u) and include its 

parameter(s) in the optimization 

 Use log(1+exp(x-c)), fit offset c  
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GLM Implementation 

 We can also use regularization to add additional prior 

knowledge about solution attributes 

 We know the filters should be smoothly varying in time 

 Penalize large curvatures in filter 

 Laplacian gives us the second derivative; we want to maximize 

likelihood while minimizing the L2 norm of the Laplacian of the filter 

 

 

 λ  is a parameter that is not explicitly part of the 

model, hence called a hyperparameter 
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GLM Implementation 

 How to choose optimal λ? 

 For a variety of λ values, 

 fit model parameters using part of the data (80%)  

 validate model on rest of the data (20%) 
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 Filter length 

of 15 time 
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GLM Implementation 
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 Filter length 

of 15 time 

steps 

 Upsampling 

factor of 4 
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Schedule 
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 PHASE I (October-December) 

 Implement and validate the LNP model using the STA 

(October) 

 Develop code for gradient descent method and validate 

(October) 

 Done, but not efficient enough. I am currently using MATLAB’s 

fminunc command instead 

 Implement and validate the GLM with regularization 

(November-December) 

 Complete mid-year progress report and presentation 

(December) 



Schedule 
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 PHASE II (January-May) 

 Implement quasi-Newton method for gradient descent 

(January) 

 Implement and validate the LNP model using the STC 

(January-February) 

 Implement and validate the GQM with regularization 

(February) 

 Implement and validate the NIM with regularization using 

rectified linear upstream functions (March) 

 Test all models (April) 

 Complete final report and presentation (April-May) 
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